A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic-Argument Approach to the Davey-Stewartson Equations

The Davey-Stewartson equations are used to describe the long time evolution of a threedimensional packets of surface waves. Assuming that the argument functions are quadratic in spacial variables, we find in this paper various exact solutions modulo the most known symmetry transformations for the Davey-Stewartson equations.

متن کامل

Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t For a class of drift–diffusion systems Kurokiba et al. The uniform boundedness and threshold for the global ...

متن کامل

Surfaces in the four-space and the Davey–Stewartson equations

The Weierstrass representation for surfaces in R3 [8, 13] was generalized for surfaces in R4 in [12] (see also [4]). This paper uses the quaternion language and the explicit formulas for such a representation were written by Konopelchenko in [9] for constructing surfaces which admit soliton deformation governed by the Davey–Stewartson equations. This generalizes his results from [8] where he in...

متن کامل

Dromion Perturbation for the Davey-Stewartson-1 Equations

The perturbation of the dromion of the Davey-Stewartson-1 equation is studied over the large time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2016

ISSN: 1937-1632

DOI: 10.3934/dcdss.2016077